Дидактические материалы по теме «Параллельность в пространстве»

2.10. Даны три попарно скрещивающиеся прямые а, b и с. Всегда ли существует плоскость: а) параллельная каждой из этих прямых (рис. 32а); б) пересекающая каждую из них (рис. 32б)? Ответ обоснуйте и выполните соответствующий рисунок.

Решение: а) Плоскость, параллельная каждой из скрещивающихся прямых существует, если данные прямые лежат в параллельных плоскостях. Kra2.cc на www.kra2at.cc. | кракен сайт даркнет kra2.cc

б) Плоскость, пересекающая каждую из скрещивающихся прямых, существует, если существует прямая, принадлежащая этой плоскости, которая пересекает каждую из данных прямых.

2.11. Дан куб ABCDA1B1C1D1. Пусть Р1, Р2, Р3, Р4, Р5, Р6, Р7, Р8 – середины ребер соответственно АВ, ВВ1, В1А1, А1А, CD, СС1, С1D1, DD1. Каково взаимное положение таких прямых и плоскостей, как: а) Р3Р4 и Р1Р2Р6 (рис. 33а); б) Р7Р8 и Р1Р2Р6 (рис. 33б); в) Р4Р7 и Р1Р2Р5 (рис. 33в); г) Р1Р6 и АВ1D (рис. 33г); д) АС и Р3Р4Р5 (рис. 33д); е) BD и Р3Р4Р5 (рис. 33е)?

Решение: а) Р3Р4 || (Р1Р2Р6) (признак параллельности прямой и плоскости);

б) Р7Р8 || (Р1Р2Р6) (признак параллельности прямой и плоскости);

в) Р4Р7 (Р1Р2Р5) (при параллельном проектировании Р4Р7 на вектор прямая пересечет плоскость Р1Р2Р5);

г) Р1Р6 || (АВ1D) (дополним плоскость АВ1D до плоскости АВ1С1D; при параллельном проектировании Р1Р6 на вектор прямая будет лежать в плоскости АВ1С1D, следовательно, в этой плоскости существует прямая, параллельная Р1Р6);

д) АС || (Р3Р4Р5) (дополним плоскость Р3Р4Р5 до Р3Р4Р6Р5; при параллельном проектировании АС на вектор прямая перейдет в диагональ параллелограмма Р3Р4Р6Р5, следовательно, в этой плоскости существует прямая, параллельная АС);

е) BD Р3Р4Р5 (при параллельном проектировании BD на вектор прямая пересечет плоскость Р3Р4Р5).

Дан параллелепипед ABCDA1B1C1D1, P и Q – внутренние точки граней соответственно ABCD и A1B1C1D1. Постройте сечение параллелепипеда плоскостью, проходящей через точки P и Q и параллельной прямой СС1 (рис. 34).

Решение: Проведем прямые PР1 и QQ1, параллельные СС1. Они задают плоскость, параллельную СС1 и проходящую через точки P и Q.

2.13. Дан куб ABCDA1B1C1D1; точка Р – середина ребра АА1. Постройте сечение куба плоскостью, проходящей через точки Р и D1 параллельно диагонали АС грани ABCD куба (рис. 35). Найдите периметр сечения, если ребро куба равно 10.

Решение: АС1 || (РВ1D1) (в этом можно убедиться, применив свойство диагоналей в параллелограмме A1B1C1D1 и теорему Фалеса к треугольнику АА1С1). По теореме Пифагора: . По формуле Герона: .

2.14. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36).

Решение: Пусть прямые а и b скрещиваются. Выберем на прямой а произвольно точку А и проведем прямую с, параллельную b (через точку, не лежащую на данной прямой можно провести единственную прямую, параллельную данной). Прямые а и с задают плоскость β. По признаку параллельности прямой и плоскости: b || β. Аналогично, проведем прямую d в плоскости α.

α || β (если две пересекающиеся прямые плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны).

3.06. Постройте сечение пятиугольной пирамиды PABCDE плоскостью α, которая проходит через внутреннюю точку М основания ABCDE параллельно грани РAB (рис. 37).

Рис. 37

Решение: Так как прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны, а плоскость α параллельна грани РАВ, то: а) прямая пересечения плоскости α с плоскостью основания пирамиды должна быть параллельна АВ; б) прямая пересечения α с плоскостью грани РВС – параллельна АР; в) прямая пересечения α с плоскостью РАD – параллельна РА, поэтому проводим: 1) через точку М прямую KF || AB; 2) FH || PA; 3) KR || PB; 4) ML || AP. Пятиугольник HLRKF – искомое сечение. В доказательстве используется признак параллельности прямой и плоскости, признак параллельности плоскостей.
Перейти на страницу: 1 2 3 4 5 6